(资料图)
目录问题展现解决代码代码1输出结果代码2输出结果代码3输出结果问题展现假设有一个旅行商人要拜访全国 31 个省会城市,他需要选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择要求是:所选路径的路程为所有路径之中的最小值。全国 31 个省会城市的坐标为 [1304 2312; 3639 1315; 4177 2244; 3712 1399; 3488 1535; 3326 1556; 3238 1229; 4196 1004; 4312 790; 4386 570; 3007 1970; 2562 1756; 2788 1491; 2381 1676; 1332 695; 3715 1678; 3918 2179; 4061 2370; 3780 2212; 3676 2578; 4029 2838; 4263 2931; 3429 1908; 3507 2367; 3394 2643; 3439 3201; 2935 3240; 3140 3550; 2545 2357; 2778 2826; 2370 2975]。
解决代码代码1clc; close all; clear% 设置初始化参数NC_max=200; % 最大迭代次数m=50; % 蚂蚁个数Alpha=1; % 表征信息素重要程度的参数Beta=5; % 表征启发式因子重要程度的参数Rho=0.1;% 信息素蒸发系数Q=100;% 信息素增加强度系数% n个城市的坐标,n×2的矩阵Citys = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975];%% 第1步:变量初始化n = size(Citys, 1); % n表示问题的规模(城市个数)D = distanceMatrix(Citys); % D表示完全图的赋权邻接矩阵Eta = 1 ./ D; % Eta为启发因子,这里设为距离的倒数Tau = ones(n, n); % Tau为信息素矩阵Tabu = zeros(m, n); % 存储并记录路径的生成NC = 1; % 迭代计数器,记录迭代次数R_best = zeros(NC_max, n); % 各代最佳路线L_best = inf .* ones(NC_max, 1); % 各代最佳路线的长度L_ave = zeros(NC_max, 1); % 各代路线的平均长度while NC <= NC_max % 停止条件之一:达到最大迭代次数,停止 %% 第2步:将m只蚂蚁放到n个城市上 Randpos = []; % 随机存取 for i = 1:(ceil(m / n)) Randpos = [Randpos, randperm(n)]; end Tabu(:, 1) = (Randpos(1, 1:m))"; %% 第3步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游 for j=2:n % 所在城市不计算 for i=1:m visited=Tabu(i,1:(j-1)); % 记录已访问的城市,避免重复访问 J = 1:n; % 待访问的城市 J(ismember(J, visited)) = []; % 删除已访问城市 % 计算待选城市的概率分布 P = (Tau(visited(end), J).^Alpha) .* (Eta(visited(end), J).^Beta); % visited(end)表示蚂蚁现在所在城市编号,J(k)表示下一步要访问的城市编号 P=P/(sum(P)); % 把各个路径概率统一到和为1 % 按概率原则选取下一个城市 Pcum=cumsum(P); % cumsum,元素累加即求和 % 蚂蚁要选择的下一个城市不是按最大概率,就是要用到轮盘法则,不然影响全局收缩能力,所以用累积函数 Select=find(Pcum>=rand); % 若计算的概率大于原来的就选择这条路线 to_visit=J(Select(1)); Tabu(i,j)=to_visit; % 提取这些城市的编号到to_visit中 end end % 将当前最佳路径加入到下一次迭代 if NC >= 2 Tabu(1,:) = R_best(NC-1,:); end %% 第4步:记录本次迭代最佳路线 L = zeros(m, 1); % 开始距离为0,m*1的列向量 for i = 1:m R = Tabu(i, :); for j = 1:(n - 1) L(i) = L(i) + D(R(j), R(j + 1)); % 原距离加上第j个城市到第j+1个城市的距离 end L(i) = L(i) + D(R(1), R(n)); % 一轮下来后走过的距离 end L_best(NC) = min(L); % 最佳距离取最小 pos = find(L == L_best(NC)); R_best(NC, :) = Tabu(pos(1), :); % 此轮迭代后的最佳路线 % 找到路径最短的那条蚂蚁所在的城市先后顺序 % pos(1)中1表示万一有长度一样的两条蚂蚁,那就选第一个 L_ave(NC) = mean(L); % 此轮迭代后的平均距离 NC = NC + 1; % 迭代继续 %% 第5步:更新信息素 Delta_Tau = zeros(n, n); % 开始时信息素为n*n的0矩阵 for i = 1:m R = Tabu(i, [1:n, 1]); indices = sub2ind(size(Delta_Tau), R(1:end-1), R(2:end)); Delta_Tau(indices) = Delta_Tau(indices) + Q ./ L(i); end % 此次循环在路径(i,j)上的信息素增量 Tau = (1 - Rho) .* Tau + Delta_Tau; %% 第6步:禁忌表清零 Tabu = zeros(m, n); % 直到最大迭代次数end%% 第7步:输出结果Pos = find(L_best == min(L_best));Shortest_Route = R_best(Pos(1), :);Shortest_Length = L_best(Pos(1));displayResults(Citys, Shortest_Route, Shortest_Length, L_best, L_ave)disp(["最短距离:" num2str(Shortest_Length)]);disp(["最短路径:" num2str([Shortest_Route Shortest_Route(1)])]);%% 函数部分function D = distanceMatrix(C)n = size(C, 1);D = zeros(n, n);for i = 1:n for j = 1:n if i ~= j D(i, j) = norm(C(i, :) - C(j, :)); else D(i, j) = eps; end D(j, i) = D(i, j); endendendfunction displayResults(Citys, Shortest_Route, Shortest_Length, L_best, L_ave)figure(1)N = length(Shortest_Route);scatter(Citys(:, 1), Citys(:, 2));hold on;R = [Shortest_Route, Shortest_Route(1)];for ii = 1:N plot(Citys(R(ii:ii+1), 1), Citys(R(ii:ii+1), 2),"o-", "LineWidth",1.5); hold on;endtext(Citys(Shortest_Route(1), 1), Citys(Shortest_Route(1), 2), " 起点");text(Citys(Shortest_Route(end), 1), Citys(Shortest_Route(end), 2), " 终点");xlabel("城市位置横坐标");ylabel("城市位置纵坐标");title("蚁群算法优化旅行商问题");grid on;figure(2)plot(1:length(L_best), L_best(1:end), "b", "LineWidth",1.5);hold on;plot(1:length(L_ave), L_ave(1:end), "r", "LineWidth",1.5);legend("最短距离", "平均距离");xlabel("迭代次数");ylabel("距离");title("平均距离和最短距离");end
输出结果最短距离:15609.4771最短路径:15 14 12 13 11 23 16 5 6 7 2 4 8 9 10 3 18 17 19 24 25 20 21 22 26 28 27 30 31 29 1 15
代码2clc; close all; clear% Initialize the parametersnum_ants = 50; % Number of antsnum_iterations = 200; % Number of iterationsalpha = 1; % Importance of pheromonebeta = 5; % Importance of heuristic informationrho = 0.1; % Evaporation rate of pheromonecoordinates = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975];% Calculate distance matrixn = size(coordinates, 1);dist_matrix = zeros(n);% error statement!!!% start_city_custom = input(sprintf("Enter the starting city index (1 to %d): ", n));% start_city = start_city_custom;for i = 1:n for j = i+1:n dist_matrix(i, j) = norm(coordinates(i, :) - coordinates(j, :)); dist_matrix(j, i) = dist_matrix(i, j); endend% Initialize the pheromone matrixpheromone = ones(n, n);% Start the iterationsbest_distance = inf;best_path = [];for i = 1:num_iterations paths = zeros(num_ants, n + 1); path_lengths = zeros(num_ants, 1); % For each ant for j = 1:num_ants start_city = randi(n); paths(j, 1) = start_city; for step = 2:n current_city = paths(j, step - 1); not_visited = setdiff(1:n, paths(j, 1:step - 1)); prob = (pheromone(current_city, not_visited) .^ alpha) .* ((1 ./ dist_matrix(current_city, not_visited)) .^ beta); probabilities = prob / sum(prob); next_city = not_visited(randsample(length(not_visited), 1, true, probabilities)); paths(j, step) = next_city; end paths(j, n + 1) = paths(j, 1); path_lengths(j) = sum(dist_matrix(sub2ind(size(dist_matrix), paths(j, 1:n), paths(j, 2:n + 1)))); if path_lengths(j) < best_distance best_distance = path_lengths(j); best_path = paths(j, :); end end % Update the pheromone matrix pheromone = (1 - rho) * pheromone; for j = 1:num_ants for step = 1:n pheromone(paths(j, step), paths(j, step + 1)) = ... pheromone(paths(j, step), paths(j, step + 1)) + 1 / path_lengths(j); end endend% Print the best pathnum_cities = size(coordinates, 1);fprintf("Optimal path:\n");for j = 1:num_cities fprintf("%d -> ", best_path(j));endfprintf("%d\n", best_path(1));fprintf("Optimal distance: %f\n", best_distance);% {% start_city=randi(n)用于为每只蚂蚁随机选择起始城市。% n 代表城市数,randi(n) 生成1到n(含)之间的随机整数。% 蚂蚁从不同的城市开始,这增加了探索解决方案的多样性,有助于防止算法陷入局部最优。% }
输出结果Optimal path:14 -> 12 -> 13 -> 11 -> 23 -> 16 -> 5 -> 6 -> 7 -> 2 -> 4 -> 8 -> 9 -> 10 -> 3 -> 18 -> 17 -> 19 -> 24 -> 25 -> 20 -> 21 -> 22 -> 26 -> 28 -> 27 -> 30 -> 31 -> 29 -> 1 -> 15 -> 14Optimal distance: 15609.477144
代码3clc; close all; clear% Coordinates of 31 provincial capital cities in Chinacoords = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975];% Calculate distance matrixn = size(coords, 1);dist_matrix = zeros(n);for i = 1:n for j = i+1:n dist_matrix(i, j) = norm(coords(i, :) - coords(j, :)); dist_matrix(j, i) = dist_matrix(i, j); endend% Initialize ACO parametersn_ants = 50;n_iterations = 200;alpha = 1;beta = 5;rho = 0.1;Q = 100;% ACO algorithm[best_path, best_dist, avg_dists, best_dists] = ACO(dist_matrix, n_ants, n_iterations, alpha, beta, rho, Q);% Display the optimal path and its distancedisp("Optimal path:");optimal_path_str = join(string(best_path), "->"); disp(optimal_path_str); disp("Optimal distance:");% disp(best_dist);fprintf("%.6f\n", best_dist);% Plot the cities and the optimal pathfigure;plot(coords(:, 1), coords(:, 2), "o");hold on;plot(coords(best_path, 1), coords(best_path, 2), "-");title("Cities and the Optimal Path");xlabel("X Coordinate");ylabel("Y Coordinate");grid on;% Annotate city numbersfor i = 1:n text(coords(i, 1), coords(i, 2), num2str(i), "HorizontalAlignment", "left", "VerticalAlignment", "bottom");end% Plot the convergence curvesfigure;plot(1:n_iterations, best_dists, "b-", 1:n_iterations, avg_dists, "r-");title("Convergence Curves");xlabel("Number of Iterations");ylabel("Path Distance");legend("Best Path", "Average Path");grid on;% ACO functionfunction [best_path, best_dist, avg_dists, best_dists] =... ACO(dist_matrix, n_ants, n_iterations, alpha, beta, rho, Q)n = size(dist_matrix, 1);best_path = zeros(1, n + 1);best_dist = Inf;avg_dists = zeros(1, n_iterations);best_dists = zeros(1, n_iterations);pheromone_matrix = ones(n, n);visibility_matrix = 1 ./ dist_matrix;for iter = 1:n_iterations paths = zeros(n_ants, n + 1); path_lengths = zeros(n_ants, 1); for ant = 1:n_ants start_city = randi(n); paths(ant, 1) = start_city; for step = 2:n current_city = paths(ant, step - 1); not_visited = setdiff(1:n, paths(ant, 1:step - 1)); prob = (pheromone_matrix(current_city, not_visited) .^ alpha) .*... (visibility_matrix(current_city, not_visited) .^ beta); next_city = not_visited(randsample(length(not_visited), 1, true, prob / sum(prob))); paths(ant, step) = next_city; end paths(ant, n + 1) = paths(ant, 1); path_lengths(ant) = sum(dist_matrix(sub2ind(size(dist_matrix), paths(ant, 1:n), paths(ant, 2:n + 1)))); if path_lengths(ant) < best_dist best_dist = path_lengths(ant); best_path = paths(ant, :); end end % Update pheromone matrix pheromone_matrix = (1 - rho) * pheromone_matrix; for ant = 1:n_ants for step = 1:n pheromone_matrix(paths(ant, step), paths(ant, step + 1)) = ... pheromone_matrix(paths(ant, step), paths(ant, step + 1)) + Q / path_lengths(ant); end end % Calculate average path length and record the best distance avg_dists(iter) = mean(path_lengths); best_dists(iter) = best_dist;endend
输出结果Optimal path:15->14->12->13->11->23->16->5->6->7->2->4->8->9->10->3->18->17->19->24->25->20->21->22->26->28->27->30->31->29->1->15Optimal distance:15609.477144
X 关闭
X 关闭